

Message passing for integrating and assessing renewable generation in a redundant power grid

Lenka Zdeborová (Los Alamos Natl. Lab.)

in collaboration with Scott Backhaus (LANL) Orelien Decelle (Univ. Paris XI) Misha Chertkov (LANL)

Assessing renewable generation

Intermittent renewable-sources-based generation destabilizes the grid. How to improve grid control schemes?

If renewable sources produce power x, how much can be saved on the level of the firm generation?

Improvement trough redundancy

Build additional power lines and introduce switches (on / off = power line connected to / disconnected from the network)

Redundancy must help to optimize both stability and efficiency - larger space to optimize over. But how much does redundancy help?

Methodology:

- Approach A: Take a realistic power grid model and several computers and run simulations. Do again when details change ...
- Approach B (probabilistic + physicist way):
 Study behavior of simple abstract models that
 facilitate the analysis, and look for universal
 properties, dependencies and behavior.
 Model choice criteria (in physics): The simpler
 and richer the better.

Our power grid model

- M producers, N=DM consumers
- Out of every D consumers R have auxiliary lines

Consumer "i" consumes x_i

produces

 z_i

Producer "a" capability y_a

M=4, N=12, D=3

Setting

Switch variables for power lines:

$$\sigma_{ia} = 0/\sigma_{ia} = 1$$

Each consumer has exactly one line on.

Constraints

$$\sum_{a \in \partial i} \sigma_{ia} = 1$$
 Every consumer one connection

$$\sum_{i \in \partial a} \sigma_{ia}(x_i - z_i) \leq y_a$$
 Producers not overloaded

Note that the final topology is a tree, hence the Kirchhoff's laws satisfied.

However, general power flow optimum cannot be worse than the tree case!

Questions

Given $\{x_i\}, \{z_i\}, \{y_a\}$ can all the constraints be simultaneously satisfied? (Nobody overloaded.)

If yes, then how many satisfying configurations of the switches are there? Is it easy to find one?

Answer: via Belief Propagation

How does BP work?

Prob. that line "ia" is in state σ_{ia} conditioned

$$\psi^{a \to i}_{\sigma_{ia}}$$

 $\sqrt{i} \rightarrow a$

constraint on "i" is missing

constraint on "a" is missing

Iterative "message passing" scheme

Belief Propagation Equations

$$\chi_{1}^{i \to a} = \frac{1}{Z^{i \to a}} \prod_{b \in \partial i \setminus a} \psi_{0}^{b \to i}
\chi_{0}^{i \to a} = \frac{1}{Z^{i \to a}} \sum_{b \in \partial i \setminus a} \psi_{1}^{b \to i} \prod_{c \in \partial i \setminus a, b} \psi_{0}^{c \to i}
\psi_{1}^{a \to i} = \frac{1}{Z^{a \to i}} \sum_{\sigma_{\partial a \setminus i a}} \theta(y_{a} - w_{i} - \sum_{j \in \partial a \setminus i} \sigma_{j a} w_{j}) \prod_{j \in \partial a \setminus i} \chi_{\sigma_{j a}}^{j \to a}
\psi_{0}^{a \to i} = \frac{1}{Z^{a \to i}} \sum_{\sigma_{\partial a \setminus i a}} \theta(y_{a} - \sum_{j \in \partial a \setminus i} \sigma_{j a} w_{j}) \prod_{j \in \partial a \setminus i} \chi_{\sigma_{j a}}^{j \to a}
\psi_{0}^{a \to i} = \frac{1}{Z^{a \to i}} \sum_{\sigma_{\partial a \setminus i a}} \theta(y_{a} - \sum_{j \in \partial a \setminus i} \sigma_{j a} w_{j}) \prod_{j \in \partial a \setminus i} \chi_{\sigma_{j a}}^{j \to a}$$

Belief Propagation

- Distributed approximative way of:
- (a) computing the probability that a given switch is on or off.
- (b) estimating number of valid (not overloading) configurations.

For large number of customers and producers (thermodynamic limit) - average analysis solvable.

Switching model without renewable generation

Average case analysis

Consumption random number between $(\overline{x}-\Delta/2)$ and $(\overline{x}+\Delta/2)$

 \mathcal{E} fraction of consumers with no demand.

$$y_a = 1$$

 $\forall a$

$$z_i = 0$$

 $\forall i$

flat production no renewable resources

WalkGrid efficient algorithm for switching

WALKGRID

- 1 Assign each value of σ 0 or 1 randomly (but such that $\forall i \in G : \sum_{\alpha \in \partial i} \sigma_{i\alpha} = 1$);
- 2 repeat Pick a random power generator α which shows an overload, and denote the value of the overload, δ;
- 3 Choose a random consumer i connected to the generator α, i.e. σ_{iα} = 1;
- Pick an arbitrary other generator which is not overloaded and consider switching connection from $(i\alpha)$ to $(i\beta)$.
- if (in the result of this switch α is relieved from being overloaded
 - and β either remains under the allowed load or it is overloaded but by the amount less than δ)
 - Accept the move, i.e. disconnect i from α and connect it to β thus setting $\sigma_{i\beta} = 1$, $\sigma_{i\alpha} = 0$.
 - else With probability p connect consumer i to β instead of α ;
- 9 until Solution found or number of iterations exceeds MT_{max}.

With renewable generation

Example n. 1

somebody must serve D-R+1 fully demanding consumers

Fraction 1/3 of consumers produce amount z Every consumer consumes random number in (0.9,1.1)

Example n. 2

Every consumer produced a random number between (0,z)

Example n. 3

produced > consumed

$$y/3 > 1 - fz$$

amount z is produced by fraction f of consumers

Conclusions and Perspectives

- Existence of SAT/UNSAT phase transition and regimes where higher penetration useful or futile.
- Redundancy + switches help renewable integrations. Belief propagation a tool of analysis but also distributed control algorithm.
- In physics: Study of toy models (and phase transitions) leads to qualitative understanding. Is that true also for the Smart Grid?
- © Combine belief propagation with DC or AC power flow rules on a non-tree topology.

References

- L. Zdeborová, A. Decelle, M. Chertkov; Phys. Rev. E 90, 046112 (2009).
- L. Zdeborová, S. Backhaus, M. Chertkov; in HICSS 43.

